# Online CAT Coaching: A few interesting True/False questions from Geometry

State whether the following statements are true or false

1. A parallelogram that circumscribes a circle has to be a square
2. A trapezium inscribed in a circle has to be an isosceles trapezium
3. Orthocenter of a triangle can lie outside the triangle
4. Triangle with sides a, b and c has the relationship a^2 + b^2 > c^2, the triangle has to be acute-angled.
5. Diagonals of a parallelogram are angle bisectors of the angles of a parallelogram.

Scroll down for answers and explanation

1. A parallelogram that circumscribes a circle has to be a square: FALSE

In a parallelogram, opposite sides are equal. In a quadrilateral, the sums of pairs of opposite sides are equal. So, a parallelogram that circumscribes a circle should have all 4 of its sides equal. Or, it should be a Rhombus; it need not be a square.

2. A trapezium inscribed in a circle has to be an isosceles trapezium: TRUE

An isosceles trapezium is a symmetric diagram. The two base angles should be equal and the two top angles should be equal. So, a trapezeium where the base angles were equal would be an isosceles trapezium.

In any cyclic quadrilateral, opposite angles would be supplementary. In a trapezium, co-interior angles between the parallel lines would be supplementary. So, if we took a trapezium ABCD with AB parallel to CD inscribed in a circle. Angle A and Angle D would be supplementary (co-interior angles). And Angle A and Angle C would be supplementary (opposite angles of a cyclic quadrilateral). Or angle B would be equal to angle C. Ergo, isosceles trapezium.

3. Orthocenter of a triangle can lie outside the triangle: TRUE

For any obtuse-angled triangle, two of the altitudes would lie outside the triangle, and would intersect at a point outside the triangle. So, the orthocenter can lie outside the triangle.

4. Triangle with sides a, b and c has the relationship a^2 + b^2 > c^2, the triangle has to be acute-angled: FALSE

Let us take triangle with sides 2, 3 and 4. 4^2 + 3^2 > 2^2. But  as 2^2 + 3^3 < 4^2, the triangle is obtuse-angled. Is a^2 + b^2 > c^2, we can say angle C is acute-angled. We cannot say all three angles are acute-angled. One can use cosine rule also for having a go at this question (though it should be considered inelegant)

5. Diagonals of a parallelogram are angle bisectors of the angles of a parallelogram: FALSE

Diagonals of a parallelogram bisect each other. They need not bisect the angles of the parallelogram. Imagine this, if we took a rectangle and studied its diagonals. if the diagonals bisected each other, the angle between diagonal and a side would be 45 degrees. Or, we would end up having a square. So, any rectangle that was not a square would have diagonals that were not angle bisectors. So, diagonals of a parallelogram NEED NOT be angle bisectors of the angles of a parallelogram.

### Related posts

• September 30, 2016 Ratio of Areas of a square in a circle and a Circle in a square Consider the following diagram: Let side of Square ABCD be x. The diameter of the circle circumscribing it will be equal to the diagonal of the square, which is equal to . So, […] Posted in Geometry
• October 9, 2010 CAT Geometry Question Here is a good geometry question The unequal side of an isosceles triangle is thrice the inradius of the triangle. What is the ratio of the longest side to the shortest side of this […] Posted in Geometry
• June 13, 2013 CAT Geometry   Question  x, y, z are integer that are side of an obtuse-angled triangle. If xy = 4, find z.   A.    2 B.    3 C.    1 D.    More than one possible value of z […] Posted in Geometry
• August 27, 2011 CAT Geometry Solutions Have given below the solutions to the questions on basic geometry 1. Perimeter of a triangle with integer sides is equal to 15. How many such triangles are possible? This is just a […] Posted in Geometry